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Lattice-Gas and Lattice-Boltzmann Models 
of Miscible Fluids 

Richard Holme 1'2 and Daniel  H. Rothman 1 

We introduce new lattice-gas and lattice-Boltzmann models for simulating 
miscible fluids in two dimensions. The inclusion of a nonlocal interaction 
produces a lattice gas with lower diffusivity than achieved before. To overcome 
some observed unphysical properties of this lattice gas, we introduce a lattice- 
Boltzmann analogue of the model. We first formulate a miscible two-component 
lattice-Boltzmann model with local interactions only, and show that its 
diffusivity is determined by an eigenvalue of the linearized collision operator. 
Diffusivity is then reduced by including nonlocal interactions. The utility of the 
model is demonstrated by a simulation of two-dimensional viscous fingering. 

KEY WORDS: Lattice gas; lattice-Boltzmann; miscible two-phase flow; 
viscous fingering. 

1. I N T R O D U C T I O N  

Lattice gases have recently been introduced as a new computational tool 
for the study of fluid dynamics and systems governed by related partial 
differential equations. ~1'2) Lattice-gas models are a form of cellular 
automata. (3) Particles of equal mass move at constant speed on a regular 
lattice, under an exclusion principle which limits occupancy at each site to 
one particle traveling in each lattice direction. The algorithm is intrinsically 
discrete in space, time, and physical units. The dynamics can be divided 
into two parts: propagation, when particles move from one lattice node to 
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the next, and collision, when they interact. A collision is typically deter- 
mined by conditions (the state) at that node and possibly its nearest 
neighbors. The realized macroscopic behavior is very close to the incom- 
pressible Navier-Stokes equations/4 7) 

While the discrete character of lattice gases is often beneficial, it leads 
to a high level of statistical noise. To overcome this problem, the lattice- 
Boltzmann approach has been developed, in which the particles are 
replaced by their mean population densities. A collision operator is defined 
which acts on a state vector of these probabilities. The additional assump- 
tion of no correlations between states leads to a Boltzmann equation. 
Models have been formulated either using a full representation of the 
collision operator (s~ or a linearization of the operator about a local 
equilibrium. ~ 

The choice of collisions or the form of the collision operator deter- 
mines transport coefficients such as viscosity and diffusivity. Considerable 
effort has been made to characterize and optimize the viscosity (~w13) 
to attain as high a Reynolds number as possible. Diffusivity for two- 
phase systems has been less extensively studied. Low diffusivity is of 
particular interest to facilitate the study of flow dispersion. Burges and 
Zaleski (14) characterized diffusivity using a Chapman-Enskog expansion of 
the Boltzmann equation so as to maximize the Rayleigh number for con- 
vection studies, d'Humi6res etal. (~5) derived optimized collision rules for 
minimizing the diffusivity of a lattice gas using local (single-node) con- 
centration information. Work of Rothman and Keller (~6) on a lattice-gas 
model for immiscible fluids actually produces a negative diffusivity. (17) In 
their scheme, particle directions are reorganized using nonlocal information 
so that, given conservation of color and momentum, they maximize 
particle motion toward regions of like color. This simulates interfacial 
forces which cause complete phase separation into homogeneous regions 
with stable interfaces. 

Motivated by the efficiency of the phase separation mechanism, we 
first describe a lattice gas model similar to that in ref. 16, but without inter- 
facial forces, and show that it has lower diffusivity than achieved before. 
However, statistical noise and fluctuations make the model unsuitable for 
applications. To overcome this, we turn to a lattice-Boltzmann analogue of 
the model. We first extend the linearized-Boltzmann formulation to a two- 
component miscible system and derive a simple relation between the dif- 
fusivity and one of the eigenvalues of the linearized collision operator. We 
determine the lowest diffusivity realizable with this model, and then reduce 
this further by including a small contribution from nonlocal interactions. 
We demonstrate the utility of the new method by presenting some results 
of a simulation of two-dimensional miscible viscous fingering. 
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2. A NONLOCAL LOW-DIFFUSIVITY LATTICE GAS 

We first develop a low-diffusivity miscible lattice-gas model by 
including nonlocal interactions, using a variant of in  FHP-II  lattice gas. (5) 
This model is constructed on a triangular lattice, and has seven allowed 
states per site, one particle with each of the six possible velocities and one 
rest particle. A two-phase system is defined by giving each particle an 
additional property, described as red or blue "color." 

We use the following notation. The ith velocity vector is denoted 
by ei; c 0 = 0  and c~ through c6 are unit vectors connecting neighboring 
sites on the triangular lattice. The directions are defined in Fig. 1. The 
Boolean variables r i (x)E {0, 1} and b i (x )e  {0, 1} indicate the presence 
or absence of a red or blue particle with velocity e~ at lattice site x. The 
configuration at a site is completely described by the two 7-bit variables 
r =  {ri, i=0,... ,  6} and b =  {b,  i = 0  ..... 6}. There may be only one particle 
in any given state, and this particle may be either red or blue. 

The outcome of a collision (r- ,r" ,b- ,b")  is determined as a 
two-stage process via an intermediate state (r', b'). First, the particle 
velocities are rearranged without reference to color. A new configuration is 
selected at random from those satisfying the constraints of colored mass 
conservation, 

Yr;=Eri, 2b;= Yb, (1) 
i i i i 

and color-blind momentum conservation 

2 Ci(r~ -~ b;) = 2 ci(Fi "~- hi) ( 2 )  
i i 

Second, given this new mass distribution, the color is rearranged so as to 
align the colored velocities with the local color gradient. We define the 
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Fig. 1. Definition of lattice directions. 
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local color flux to be the difference between the net red momentum and net 
blue momentum at site x: 

q[r(x), b(x)] -= ~ c i ]-ri(x)- hi(x)] (3) 
i 

The local color field f(x) is defined to be the vectorial sum of the differences 
between the number of reds and the number of blues at neighboring sites 
[i.e., the microscopic gradient of the signed (red minus blue) color 
density ]: 

f(x) -= ~ c~ ~ I-rj(x + e,) - bj(x + e,)] (4) 
i j 

We then choose r" and b" such that f .  q(r", b"), the projection of the color 
flux in the direction of the color field, is maximized, subject to the condi- 
tion r;' + b;' = r; + b~ (the occupancy of a state is unchanged). Note that if 
there is more than one outcome in either stage of the collision process that 
satisfies the requirements equally well, the result is decided by random 
selection from those outcomes. 

This algorithm is closely related to the immiscible lattice gas (ILG) 
model of Rothman and Keller, ~6~ with one important difference. In the 
earlier model, f . q  is maximized by rearranging color and momentum 
simultaneously. In the new model, particle velocities are rearranged 
without reference to color, after which color is rearranged given the new 
mass configuration. Breaking the collision into two stages removes the 
influence of the color field on collision dynamics, and so eliminates the 
surface tension. 

Figure 2 presents a comparison of the diffusivity of the new model 
with two models studied by d'Humi6res etal.  (15) The "limited diffusion" 
model minimizes diffusion using local color information, while the "self- 
diffusion" model does not optimize diffusivity. We follow McNamara (18~ in 
characterizing the diffusivity by establishing a steady-state color gradient 
and measuring the resulting flux. We use a lattice of 64 x 128 lattice units 
with wraparound boundary conditions. The color gradient is maintained in 
the long direction by recoloring all particles red at one end of the lattice 
and blue at the other. Considerable averaging is necessary to damp statisti- 
cal fluctuations. The data for the established algorithms show good agree- 
ment with previous work. (15) Unsurprisingly, the self-diffusion model has 
the highest diffusivity. At moderate and high densities our new model has 
lower diffusivity than the limited diffusion algorithm. 

However, statistical fluctuations make the new model inappropriate 
for hydrodynamic applications. Figure 3 shows the mixing of two initially 
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Fig. 2. 
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Comparison of diffusion coefficients for different lattice-gas models. 
(O) New algorithm. ([]) Limited diffusion. (A) Self-diffusion. 

Fig. 3. Nonequilibrium behavior of lattice-gas model. Time is given in time steps. 
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separated phases. Random fluctuations cause "fingering" of the interface 
between the phases. If these fingers become sufficiently thin, they detach, 
and the system evolves to a mixture of bubbles of fluid, constantly decom- 
posing, changing morphology, and reconnecting. An initially uniform color 
distribution approaches this same equilibrium. 

Though this lattice gas is unsuitable for applications, we later apply 
these ideas to the construction of a low-diffusivity lattice-Boltzmann model. 

3. A L A T T I C E - B O L T Z M A N N  M O D E L  FOR 
T W O  M I S C I B L E  F L U I D S  

3.1. M a t h e m a t i c a l  Formula t ion  

We may mathematically describe a lattice-gas collision by the equation 

V'(x, t )= ~2(V(x, t)) (5) 

where Y is a state vector at position x, s is a collision operator, and the 
primed notation describes the postcollision configuration. The elements of 
Y are Boolean variables, taking values 1 or 0 to describe the presence or 
absence of a particle in a particular state. We may replace this by a vector 
of probabilities describing the likelihood of a particle being found in each 
state. If we further assume the Boltzmann approximation that the 
probabilities are uncorrelated, the collision equation is considerably sim- 
plified. Previous workers (4"5'14'17 19) have derived theoretical results for 
lattice-gas behavior using this approximation, and have shown it to be 
valid. 

We consider a model without rest particles. We define the state at a 
site by six 2-vectors composed of the mean particle populations for each 
color, which we write N i =  (Ri, Bi). We divide this into equilibrium and 
nonequilibrium components, writing N i = N e q + N  neq, where the equi- 
librium distribution is that part of the state vector'which is invariant under 
action of the collision operator. Loss of Galilean invariance is a 
well-known problem in lattice gases. (s'14) By making a suitable choice of 
the equilibrium we may avoid this. (2~ The equilibrium is thus given by 

R eq = dr(1 + 2c~v~ + 4Q~t~v~v~) 
(6) 

B eq = db(1 + 2Cic~V ~ -F 4Qi~v~v~)  

where dr = 15Z R;, db= ~ 5~ Bi, v~ is the fluid velocity in one of the two 
orthogonal directions shown in Fig. 1, eta is the ~ component of the charac- 
teristic lattice velocity in lattice direction i, and 

Qi~I~ = c i ~ c ~ -  �89 (7) 
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In addition, it is convenient at this stage to define a state density 
d= dr + db, which takes values from 0 to 1. 

We linearize the collision equation about the given equilibrium. This 
leads to (9) 

6 
N;(x, t)=Ni(x, t)+ ~ o)ijN~eq(x, t) (8) 

j = l  

Each t% is a 2 x 2 matrix. To simplify the mathematics, we change our 
representation from six 2-vectors to the 12-vector 

y = (R1,  B1,  R2,  B2 ..... R6,  B6) r (9) 

with the nonequilibrium component written as 

y = (rl, bl, r2, b2 ..... r6, b6) r 

Substituting in Eq. (8), 

12 
y; - yi  = E y) 

j = l  

(lO) 

(11) 

where we have implicitly defined the collision operator f ~ .  
The collision operator t2ij has 16 independent elements which define 

the model's behavior. This is described in some detail in Appendix A. There 
we show that, given conservation of momentum, there will always exist a 
pair of right-eigenvectors of the operator whose associated eigenvalue )~D 
defines the diffusivity by the relation 

l) 
D = (12) 

The model also has two characteristic kinematic viscosities which are 
related to other eigenvalues 2~ by 

v = - 3  + 2  (13) 

which is an expression given previously by a number of authors. (1~ 19.21) 
All eigenvalues of t?g are required to be between 0 and --2, or else non- 
equilibrium fluctuations grow and the linearization of the operator is 
invalid. In principle, but not necessarily in practice, we can assign any 
positive value to either transport coefficient. 
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3.2. Numerical Experiments 

The diffusion coefficient is determined as for the lattice gas model. Due 
to the lower fluctuations of the lattice-Boltzmann model compared with the 
lattice gas, we may use much smaller lattices of dimension 64 x 4 lattice 
units. We used a state density d=0.5 .  Figure 4 demonstrates that the 
derived eigenvalue relation holds over many orders of magnitude. It should 
be noted, however, that the color flux saturates at a maximum value of 4d. 
Thus, for a given required color gradient IVo-I there is a maximum usable 
diffusivity Dma x = 4d/IVo-I. 

The low-diffusivity end of the range is potentially more useful. Figure 5 
shows that the theory is valid up to an eigenvalue of about -1 .95,  which 
corresponds to a diffusivity of 7.27 x 10 3 lattice units squared per time 
step. We suggest that this represents a lower limit for the diffusivity 
achievable by this model, below which discrete lattice effects become 
significant. To achieve yet lower diffusivity, we introduce another 
approach, described below. 

Kinematic viscosity has also been characterized by studying the decay 
of a standing wave, as in ref. 22. Stable behavior obeying the eigenvalue 
relation was seen for viscosities between 1.5 and 5 x 10 - 4  lattice units 
squared per time step. 

o. 

~  ............................................................ 
0.001 0.01 0.1 1.0 10.0 100.0 1000.0 10000.0 
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Fig. 4. Numerical confirmation of diffusivity eigenvalue relation. The solid line is calculated 
from the theoretical relation. Error bars are many times smaller than the symbols used to 
mark the data points. 
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Divergence from linear relationship at low diffusivities. The straight line is the 
theoretical relationship. 

We note that such static and well-defined measurements of transport  
coefficients do not necessarily carry over to dynamic simulations. The finite 
time step and lattice unit impose a lower limit on the diffusivity that can 
be accurately simulated in a given flow situation. This limit is consistent 
with stability criteria for finite-difference solutions of a one-dimensional 
convection-diffusion equation. ~23] 

4. A L O W E R  D I F F U S I V I T Y  L A T T I C E - B O L T Z M A N N  M O D E L  

The lattice-Boltzmann model introduced above achieves optimization 
of diffusivity using information from only one site, and so can be regarded 
as the lattice-Boltzmann counterpart  of the limited-diffusion lattice-gas 
model of d'Humi6res et  al. We now introduce a lattice-Boltzmann formula- 
tion based upon the nonlocal lattice gas rule developed in Section 2. At 
each collision, a local two-color linearized operator  is applied. We then 
rearrange a small fraction ~ IVal/d of the color by the nonlocal algorithm, 
where ~ is a free parameter,  IV~rl is the magnitude of the color gradient, 
and d is the state density. This parametrization preserves Fickian behavior 
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Fig. 6. Diffusivity for small addition of nonlocal algorithm. 

and keeps diffusivity independent of density. For  low diffusivities, it is 
shown in Appendix B that 

D = Do -- 2c~ (14) 

where Do is the diffusivity for local interactions only. Care must be taken 
that too much weight is not given to the nonlocal algorithm, which would 
result in D < 0. 

An experimental verification of Eq. (14) is presented as Fig. 6. We set 
the diffusivity eigenvalue to 2 o = - 1 . 9 5 ,  which is sufficiently low for 
Eq. (14) to apply, Measurements were made using a lattice of size 64 x 8 
lattice units at state density 0.5. Other results indicate that the diffusivity 
is independent of density, as expected. 

We note that if ~ is set so as to rearrange all the color at each site, this 
model is equivalent to the lattice-Boltzmann model for immiscible fluids of 
Gunstensen eta/. (21) for the case in which surface tension vanishes. 

5. A S I M U L A T I O N  OF H E L E - S H A W  F L O W  

We demonstrate qualitatively the utility of our new model with a 
simulation of miscible two-phase flow in a Hele-Shaw cell. The problem is 
of particular relevance as it is an exact dynamical analogue of two-dimen- 
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sional, two-phase flow in porous media. (24'25~ The Hele-Shaw cell consists 
of fluid confined between two parallel and closely spaced plates. The most 
interesting behavior is produced when a moreviscous fluid is displaced 
from between the plates by injection of a less viscous fluid. With immiscible 
fluids the development of the system is governed by the surface tension 
between the fluids, leading to viscous fingering of the interface known as 
the Saffman-Taylor instability. (24) With no surface tension present, other 
behavior is possible. Homsy (25) reviews what is known about the behavior 
of miscible flows. 

The solution for an equilibrium single-phase flow in a Hele-Shaw cell 
is well known. (24) Application of no-slip boundary conditions at vertically- 
oriented plates gives a parabolic velocity profile, with mean velocity 

v =  - 12--~ - g  (15) 

Here b is the plate separation, v is the dynamic viscosity, p is the density, 
VP is the applied pressure gradient, and g is the acceleration due to gravity. 
This solution also holds for regions of uniform composition. In mixed 
regions, the development of the system depends on the variation of 
viscosity with composition, and hence the development of the concentra- 
tion field. The problem is then to track regions of varying composition. 
This is straightforward using our lattice-Boltzmann model. 

A linear stability analysis of the interface between the two fluids was 
given by Chouke et  al. (26) Homsy (25) gives a summary of this for the mis- 
cible case. The interface is shown to be increasingly unstable at shorter 
wavelengths, with a cutoff at very short wavelengths due to dispersion. 
More recently, B e n s i m o n e t a L  (27) and others have used a conformal 
mapping technique to describe the evolution of the interface between two 
fluids in the limit of infinite Peclet number (no mixing). They find that the 
interface will develop one or more cusps in finite time, pointing into the 
more viscous fluid, and typically of power ~,(28) after which the equations 
no longer have a solution. These cusps occur for a wide range of initial 
conditions. (29) The cusps are classified by defining a local Cartesian 
coordinate system with origin at the cusp point and y axis parallel to 
the cusp. In these coordinates the interface has the local functional form 
y3 = O(x2).(30) 

To simulate flow in a Hete-Shaw call, we extend our model to include 
effects of gravity, pressure, and frictional drag due to the plates. Gravity is 
applied by rearranging a small fraction of the mean particle populations at 
each site so as to drive the "light" fluid upward and the "heavy" fluid 
downward. (14'3t) The viscous drag is achieved similarly, by rearranging a 
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small fraction o f  the mean particle populations isotropically between the 
states at each site so as to reduce the net momentum. A balance between 
gravity and the required velocity in Eq. (15) enables us to parametrize the 
viscous force in terms of plate separation. A pressure gradient can be 
established by the addition of momentum to one edge of the simulation. 
For  the purpose of calculating the viscous drag, we define the viscosity of 
a mixed region to be a weighted average of the viscosities of the separate 
phases. 

By varying the forcing parameters, a wide variety of behavior is 
observed. We include as Fig. 7 contour plots of concentration from a repre- 
sentative simulation. Here we apply no pressure gradient, so that the region 
of interest (where the fluids mix) remains in the center of the simulation. 
We use a lattice-Boltzmann model with local interactions only, with the 
diffusivity eigenvalue set to 2 D = -1.95. The lighter fluid is a factor of two 
less viscous than the heavier fluid, and initially occupies the bottom half of 
the lattice. The lattice size is 128 • 128 lattice units, and the effective plate 
separation is 5 lattice units. Using the lattice width L for a length scale, and 
a velocity scale U calculated from the gravitational forcing by means of 
Eq. (15), we can define a Peclet number o f P e  = UL/D ~ 1700. We define a 
dimensionless diffusive time scale T =  tU2/D= 1.5t. The two fluids are 
initially stationary, and the interface between them is horizontal. It was 

t=0;T=0.0 t=3750;T=5750 

t=1500;T=2300 t=7500;T=11500 

Fig. 7. Contour  plots for Hele-Shaw flow simulation. Contours  are for 1/4, 1/2, and 3/4 light 
fluid. The lighter, less viscous fluid is on the bottom. The lattice is 128 • 128; time is given in 
time steps t, and in terms of the diffusive time scale T. 
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found that any initially imposed perturbation in the interface was damped 
by diffusion before the instability developed. We place walls at the top and 
bottom of the lattice to contain the celt, and apply periodic boundary con- 
ditions laterally. B e n s i m o n e t a I .  (27) have used these periodic conditions 
in theoretical calculations. They also refer to work of Aribert, (32~ who 
studied the effect of periodic boundary conditions experimentally using a 
cylindrical Hele-Shaw cell. 

As can be seen from Fig. 7, the initially horizontal interface becomes 
unstable at small length scales, initiated by floating-point errors. Applica- 
tion of the results from linear stability theory gives a wavelength cutoff for 
the instability of less than one lattice unit, so we would expect the initial 
instability to be at the lattice-unit scale. The scale of the instability 
increases until its dominant wavelength is of the same order as the simula- 
tion width. The instability grows, and the concentration contours develop 
sharp points, consistent with the 2/3 power cusps expected from theory, 
which then smooth into fingers. An example of such a cusp can be seen at 
the right-hand side of the last contour plot of Fig. 7. Smoothing occurs 
when the scale of the cusp is less than one lattice unit. Bensimon et  al. note 
that in a real system, any surface tension, however small, will prevent the 
formation of cusps once the curvature is sufficiently great. Further work is 
necessary to determine whether or not the results after the appearance of 
the cusp have any validity in terms of a small surface tension parameter. 

Tan and Homsy (33) have studied the similar problem of miscible 
viscous fingering driven by pressure gradients. They use a spectral method 
for their simulations, which exhibit features in common with ours, in 
particular the cascade from small to large length scales of the instability, 
but they do not observe development of discontinuities in the interface. 
However, they describe tip-splitting of the fingers at certain Peclet numbers 
and viscosity ratios, which we do not observe. This difference may be due 
to the different forcing mechanism, or to a different parametrization of the 
viscosity of the mixed fluids. 

6. C O N C L U S I O N S  

We have introduced three new lattice-gas techniques for studying 
low-diffusivity miscible fluids. A lattice gas using nonlocal interactions 
achieved low diffusivities, but at the cost of locally non-Fickian behavior. 
A lattice-Boltzmann approach allows simulation of a wide range of dif- 
fusivities. The minimum diffusivity achievable may be further reduced by 
the application of nonlocal collisions. 

We use two dimensionless numbers to describe the range of our model. 
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The Schmidt number, which measures the ratio of diffusion of momentum 
to diffusion of color, is defined by 

V 
Sc O (16) 

The concentration Peclet number, which measures the ratio of advection to 
diffusion, is defined by 

LU 
Pe = -D- (17) 

where L and U are suitable length and velocity scales for the flow under 
study. As noted earlier, the maximum diffusivity Dmax is determined by the 
precise nature of the simulation. Setting Dmax = 10, an arbitrary but 
reasonable value, allows a range of Schmidt numbers 5 x 1 0 - 5 < S c <  
3 x 103. This range is greater than for lattice gases because in the lattice- 
Boltzmann formulation viscosity and diffusivity are completely decoupled. 
Bounds on the Peclet number depend on the length and velocity scales L 
and U of the motion, but we may write 0.67LU< Pe < 2000LU. 

The utility of the technique has been successfully demonstrated by the 
simulation of viscous fingering in a Hele-Shaw cell. Further applications, in 
particular to two-phase miscible flow in microscopic models of porous 
media, seem promising. 

A P P E N D I X A .  DEFINIT ION OF THE L INEARIZED-  
B O L T Z M A N N  OPERATOR 

In this Appendix we show how the transport coefficients of the 
miscible two-phase lattice-Boltzmann model are defined by the eigen- 
values and eigenvectors of the collision operator. We present results for 
two dimensions. Generalization to three dimensions is straightforward. 

To achieve isotropic macroscopic behavior in two dimensions, the 
collision operator must have sixfold rotational and mirror symmetries. (13) 
For l<~i,j<~6, we may write ~u=e~li_jl ,  where e~ U is as defined for 
Eq. (8). We therefore denote the matrices by e~ ~ o~ 6~ etc., where the super- 
script is the angle in degrees between the directions i and j. Using the com- 
pact notation defined by Eq. (11), we now write the collision operator 

/(D O 1[,0 60 (,0120 (I~ 180 (.0 120 O~ 60 

r 60 r 0 0,} 60 (,0 120 110180 0}120 ~ 

(0 120 (.0 60 (JO 0 0,} 60 I-,,0120 (.I}180 1 

(.0 180 0) 120 (,0 60 r 0 (I) 60 (1}120 / 

(..0 120 I-.,0180 (0 120 0.160 I]O 0 (.0 60 / 

100 60 (D 120 (jO 180 (,0 120 (0 60 O) 0 / 

~ =  (A1) 
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This can be seen to be block circulant. From an extension of the theory 
of circulant matrices (e.g., ref. 34), it can be demonstrated that the right- 
eigenvectors of this matrix are in pairs of the form 

ar a45~,/34,) (A2) 

with corresponding left-eigenvectors 

Ilu = (~), a, ~421, a4/~ -1, 74# 2, a4/~-2, ~)~23, ar 7424, ~e24,.  4'--5, 

(A3) 

Here # is an integer between 0 and 5, ~, =exp(2~zi#/6), and (a,/3) and 
(7, 6) T are respectively the right- and left-eigenvectors of the matrices 

M~ = o)~ + 2 cos ( 3 )  o)6~ + 2 cos ( 2 - 3 )  ~12~ + cos(#rc) o) 18~ (A4) 

Due to the required mirror symmetry, only four of these matrices M ,  
are distinct, giving rise to a total of eight distinct eigenvalues and eight 
eigenvector pairs to describe the system. These are defined by the 16 
independent elements of the collision matrix. Provided these are chosen 
such that the operator is not defective, the eigensystem provides a complete 
basis for the lattice dynamics. 

We require that the collision satisfy conservation of mass for each 
color and total momentum. The total change in red mass at a site is thus 
given by 

6 
~, ( r ; - r i )  = 0 (A5) 

i=l 

with a similar expression for blue mass. These conditions require that the 
vectors 

(1, 0, 1, 0 ..... 1,0); (0, 1, 0, 1,..., 0, 1) (A6) 

are left-eigenvectors of the collision matrix with eigenvalue 0. These are the 
vector pair Uo. For conservation of momentum, we require that 

(Cll, Cll,--., C61, C61) 
(A7) 

(C12, C12,..., C62, C62) 

be left-eigenvectors with eigenvalue 0. By referring to Fig. 1, we can write 
these explicitly as 

(1, 1, cos(r~/3), cos(~/3), cos(2~/3), cos(2rc/3) ..... cos(5rc/3), cos(5rc/3)) 
(A8) 

(0, 0, sin(re/3 ), sin(re/3 ), sin(2rc/3 ), sin(2rc/3 ),..., sin(5rc/3 ), sin(57z/3 )) 
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where the angle is measured positive from the 1-direction. From Eq. (A3) 
we see that these are both linear combinations of ul and us, and thus valid 
left-eigenvectors of the collision operator. There are therefore six equations 
of constraint on the elements of the collision operator, two due to each 
independent conservation relation. 

We now determine the characteristic diffusivity of the operator. In 
analogy to the calculation by H6non (1~ of the kinematic viscosity of a 
lattice gas, we consider a linear color gradient of magnitude 2G in the 
2-direction (defined in Fig. 1), which produces a uniform flux of color, but 
at constant mass state density d. Using the equilibrium equations (6), we 
get 

G 
R i  = d~o + ~ x2 + ri 

G 
Be = dbo -- ~ x2 + be 

(A9) 

where dro and dbo are values of the state density for each color at x 2 = 0 ,  

and re and b~ are the local anisotropies which maintain the color gradient. 
We define microscopic momentum fields for each color by 

F;= 2 Rici~, F~= Z Bici~ (AIO) 
i i 

where e represents one of the two orthogonal directions 1 and 2 defined in 
Fig. 1. By assumption, 

F~ = F~ = 0 

F~ = - F 2  b = F 
(Al l )  

where F is a constant (dependent on G) to be determined. We assume that 
the anisotropy in the color distribution, like the color flux, is independent 
of position. This gives 

6 6 

re=0, ~ hi=0 
i - - 1  i - - I  

6 6 

r iCi l -=O,  ~ biCel--~O 
i - 1  i= l  

6 6 

2 riCe2 =F, E bec,2 = - F  
/ = 1  i = 1  

(A12) 
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The propagation equation from one time step to the next can be 
written 

e i ( x  + c/, t +  1 )=  R~(x, t) (A!3) 

with a similar equation for Bi. By assuming a steady state over time, this 
reduces to 

Ri(x + ci) = R;(x) (A14) 

Using (A9), we obtain 

ri(x ) - r~(x) = -G/6ci2 (A15) 

with a similar equation for bi. Combining with the collision Eq. (11), we 
write these equations in matrix form: 

G 
~ y  = ~- z (A16) 

where y is the state vector and z = (c12, -c12 ..... c62, -c62) r. 
The vector z can be constructed from right-eigenvectors vl and v5 and 

is orthogonal to the left-eigenvectors required for momentum conservation 
given in Eqs. (A7). Hence, by biorthogonality z is always a required right- 
eigenvector of the operator, y is a scalar multiple of z, and from Eqs. (A12) 
we derive the scale factor to be F/3. The steady-state color distribution is 
given by 

G F 
R i = d ro .-~- -~  X 2 --}- -~ C i 2 

(a17) 
G F 

Bi = dbo -- -~ x2 -- ~ el2 

F and G are related by 

F 1 
G-2)~o (A18) 

where 20 is the eigenvalue of s corresponding to the eigenvector z. 
For  a simple concentration gradient, we expect the flow of color to 

obey Fick's law, 

&r 
J =  - D  - -  (A19) 

dx2 

where J is the color flux across a line per unit length, D is the diffusion 
coefficient, and a is the color density, defined per unit area. Due to the 
triangular lattice, 

da 4 
dx2 - ~ G (A20) 

822/68/3-4-6 
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Following McNamara (18~ and others, we calculate the flux crossing a line 
between two rows of lattice points. This is 

J = R2(x + e2) - B2(x + e2) + R3(x + e3) -- B3(x + e3) 

- Rs(x) + Bs(x) -- R6(x) + B6(x) (A21) 

Using Eqs. (A17) and (A19)-(A21), we find that the diffusivity is 

F 1 
D - (A22) 

G 4 

Using Eq. (A18), we can write this in terms of the relevant eigenvalue of 
the collision operator: 

1 

We now briefly discuss the other degrees of freedom of the operator. 
The eigenvalues corresponding to the eigenvectors v2 and v4 define the 
model's kinematic viscosity. This can be shown from a Chapman-Enskog 
expansion of the particle distribution function (19) or by the more physical 
arguments of H6non. (1~ The viscosity is well defined for mixtures of the 
two species whose relative proportions are given by the eigenvectors. The 
eigenvalue relations are the same as the one-color expression which has 
been given by a number of authors, (1~ 13, ~9, 21 

v= _ 1 ( 2 +  4\2v (A24) 

The eigenvectors v3 have no direct relation to any transport proper- 
ties. (35) To make the algorithm as stable as possible, the corresponding 
eigenvalues are set to - 1 ,  so that perturbations in this eigendirection die 
away immediately. 

A P P E N D I X  B. A N A L Y S I S  OF N O N L O C A L  C O L L I S I O N  
A L G O R I T H M  

In this Appendix, we extend the analysis in Appendix A to the 
nonlocal algorithm. 

To simplify the mathematical development, we will assume that the 
red and blue fluids are present in equal proportions. Consider the 
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steady-state color distribution given by Eqs. (A17). Application of the local 
linearized collision operator to this produces 

G F 
R;(x~) = dro + ~ x~ + (1 + ;~D) ~ ci~ 

G F 
B~(x2) = dbo -- -~ x2 -- (1 + 2D) -~ C~2 

(B1) 

We then apply the nonlocal algorithm with the scaling c~ [Val/d. This takes 
total mass e [Vo-[ and redistributes its color to oppose the local color 
gradient. By our definitions, IV~rl = 4G/x/-3. The resulting color distribution 
can then be written 

_ R;'(x2) = ( 1 x f ~ d / \  + 6  xz+(I+2D)  F 

2Gc~ 4Ga 
+ ~ +---~- ci2 

4Ge \ /  G 
B~'(x2)= ( 1 - f ~  d)~d , .o -~X2- ( l+2 ,9 )Fc i2 )  

2Gc~ 4Gc~ 

(B2) 

Using the steady-state propagation equation (A14), we require this to be 
equal to 

G F 
Ri(x2 + ei2) = a~o + ~ (x~ + c~2) + ~ c,~ 

d G F Bi(x2-[-ci2) = bO---~ (X2-}-Ci2)---~ Ci2 

(B3) 

Assuming ~ to be small, we obtain the equation 

G 
~- = F2D + 4G~ (B4) 

Using (A22), we may write this in terms of the diffusivity 

8 ~ -  1 1 
D = - -  (BS) 

22D 4 
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Wri t ing  2 D in terms of Do, the diffusivity for the local  a lgor i thm only,  we 

ob ta in  

D =  D o - 8 o ~ ( D o  + ~ )  (B6) 

F o r  small  values of Do, this simplifies to the express ion given earl ier  as 
Eq. (14), 

D = Do - 2c~ (B7) 

This theory  is a p p r o x i m a t e  for nonequa l  co lor  concentra t ions .  

However ,  s imula t ions  suggest that  it remains  a good  a p p r o x i m a t i o n  over  

a wide range  of  condi t ions .  
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